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External feedback control of chaos using approximate periodic orbits
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We apply the external feedback technique to control chaos in real physical systems. The target, unstable
periodic orbits embedded in chaotic attractors are obtained from chaotic time series in terms of the delay
coordinates technique. We demonstrate its efficiency for periodically forced, single- and two-degree-of-
freedom systems consisting of one or two pendula in numerical simulations and experiments.
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[. INTRODUCTION different parameter valugs$o systems as in Sec. 4 (8] is
inappropriate in some applications.

Chaos control has attracted much attention in the past In this paper, we apply the external feedback technique to
decade and some techniques for controlling chaotic dynamiontrol chaos in real physical systems. The target UPOs are
cal systems have been develogéc?]. Among them, Pyra- obtained from chaotic time series in terms of the delay coor-
gas[3] proposed two effective control methods for continu- dinates techniqu¢10,11, basically according to Pyragas’
ous chaotic dynamical systems. Consider a situation in whichough idea. We demonstrate its efficiency for periodically

the governing equation is given by forced, single-, and two-degree-of-freedom systems consist-
_ ing of one or two pendula in numerical simulations and
§=P(&,m), n=Q(&n)+F(1), (1)  experiments.

The outline of this paper is as follows. In Sec. Il our
where £e R"™! is not available or not of interest, only  external feedback control technique is described. In particu-
eR can be measure®: R""*XR—R""' andQ:R"*XR |ar, an approach to obtain the target UPOs from chaotic time
— R are sufficiently smooth, anB(t) is the control force, series based on the delay coordinates technique is presented.
and assume that Eqél) have a chaotic attractor wheh  Numerical simulation and experimental results for periodi-
=0. In this setting, he proposed two types of feedback coneally forced, single, and coupled pendula are given in Secs.

trol, external feedback control Il and IV. Finally, a summary and some comments are stated
- in Sec. V.
F()=«(n(t)—n) 2
anddelayed feedback control Il. APPROACH

F(t)=k(n(t—7)— 5(t)), 3) Consider systems of the forfi2]

to stabilize an unstable periodic orbidPO) embedded in the
chaotic attractor. Herg(t) is the UPO to be stabilized and  \heref:R"x R— R" (n=2) andg:R"—R™ (m=1) are suf-

is its period. In particular, the delayed feedback control techficiently smooth, and is ~periodic int. Herex denotes the
nique has been applied experimentally to many mechanicatate of the system andthe output. So only can be mea-
electric, chemical, and biological probler®4], and it was  sured. Equation&l) are assumed to exhibit chaotic motions.
also extended to improve its efficienfy]. However, it was  Note that any periodic orbit in Eq¢4) has a period of the
shown numerically{6] (see also Sec. llland theoretically  form kr with k some positive integer. In the following, we
[7] that the effectiveness of the method is very restrictive. only treat the case af-periodic orbits, although an extension

On the other hand, the external feedback control was acsf the result tok-periodic orbits is obvious.

tually used to control chaos in only very limited cases. Tothe | et X{t) be an unstable-periodic orbit near the chaotic
authors’ knowledge, there has been no experimental applicagiractor in the first equation of Eqgl), and lety(t) be the
tion except Ref[8], in which a priori given equilibrium o rresponding-periodic output, i.e.y(t)=g(X(t)). We at-

states were stabilized in an electric circuit. So it is still U”'tempt to stabilize the orbi(t) by external feedback, so that
known whether this method is valid or not for stabilizing {pe governing equation becomes

UPOs embedded in chaotic attractors. Especially, obtaining

precise UPOs enough for chaos control seems difficult al- x=f(x,t) +K[y(t)—y] [y=9(x)], (5

though a rough idea to overcome the problem was stated in

Pyragas’ original papd3]. It should also be noted that pro- whereK is annxXm matrix. Equation(5) contains Pyragas’

viding large perturbationge.g., the use of large feedback case of Egs(1) with external feedback as a special one. In

gain and an attempt to stabilize the periodic orbit existing forrealistic situations, the exact UPgjt) is difficult to obtain
since it is unobservable. However, when the systéex-
hibits chaos, one can sometimes obtain an approximation for

*Present address: Meikikou Corporation, 180 Higashi, Okute-choy(t) from chaotic time series of(t), e.g., using a method of
Toyoake, Aichi 4702111, Japan. Lathrop and Kostelich11], as described below. If such an

x=f(x,t), y=g(x), xeR", yeR™ (4)
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FIG. 2. Numerically computed chaotic attractors in E¢s})
FIG. 1. Determination of an approximate UPO. Here the time with 6=0.5, y=1.6, andw=w/5: (a) 0=0; (b) 0=0.03. Hereo

is reset at=j'7. represents the intensity of the added Gaussian white noise.
approximate UPQ/(t) is obtained, then we use it instead of Virn I 0<i<Kk,
the exact UPO, so that E¢) is changed as y(t) (11

Ty, if k=i=N

X=TxO+KIY(O =yl © for te[iAt,(i + 1)At) as an approximate UPO correspond-

We now describe an approach to obtain an approximat#g to the pointy, obtained from the first time series. The
UPO ¥(t). For simplicity, we assume that the observablememory this approach requires is not so large.
variabley is scalar, i.e.yeR, and two-dimensional delay ~ We can also use the approach[a8] to keep the control

coordinates [10] (y(i7),y[(i+1)7]), i=1,23..., are force
used. An extension of the approach to higher-dimensional e
cases is obvious. u=K[y(t)-y] (12)

We first sample a chaotic time series gft) at t
=r,271,37,... . Denote byy,, i=1,2,3 ..., this time series.

Using a technique of11], we can detect an approximate max(|y[ (i — 1) 7]=Y(O)|,|y(ir) =V (0))<r, (13
locus of a UPO at=0: if

small if it is applied forte[i7,(i+1)7) only when

max[yisa—Yisdhlyies—yi)<r ) for some small constant,>0. In addition, this treatment
{Yje2=Yjealh Y17V 0 prevents the birth of undesirable stable orbits by the external

for some integej >0 and some small constarg>0, then  f¢edback control. _ _ _ _
there exists a-periodic orbity(t) such thaty(iz)~y;  ; for In the following secqon_s, we give numencal and experi-
i=0.+1 Lety, be one of such points corresponding to mental results for periodically forced, single and coupled
appr,(;xir,ﬁ.z;\t.e UP(gs. pendula to demonstrate the effectiveness of this chaos con-
We next sample another chaotic time serieg/¢t) and  trol technique.
denote it byy/ , i=1,2,3,.... Suppose that we find successive
pointsyj’,+i , 1=0,1,2, in the time series such that condition
(7) holds asy;.;=y; i=0,1,2, i.e.,

IIl. NUMERICAL SIMULATIONS FOR A FORCED
PENDULUM WITH LINEAR DAMPING
[
I The first example is a periodically forced pendulum with
ma)(|yj”+2_yj”+1| ’|yj/’+1_yj,f|)<r0 (8)  linear damping, for which the dimensionless governing equa-
tion is given by
and
X1=Xs, Xo=—SiNX;— 6X,+ yCOSwt, (14
ma>(|yj' _y0|!|yj,+1_’yO|!|yj,+2_y0|)<rll C)
where 8, y, and w are positive constants and the period is
wherer;>0 is a small constant. Then we recoy@t) at  r=27/w. Only the velocityy=x, is assumed to be mea-
a short intervalAt for j'r<t<(j'+2)7, where NAt=7  syred. We fix the parameter values &s0.5, y=1.6, and

for some large integeN>0. Let y;=y(j'7+iAt), i  w=x/5, which were also chosen [6].

=0,1,...,q, be the recorded data corresponding to a wave Figure 2 shows numerically computed chaotic attraétors
form of y(t) with length 2r. In particular, 9o=yj’,, Yn  in the delay coordinatesyf,y,+1). The attractors are obvi-
:yj,’+l’ andyZN:yj,'+2' ously folded so that an extra dimension is required to recon-

Finally, using the recorded datg, i=0,...,2N, we

search for an integee>0 such that
lUsing computer software callebynamics [14], we computed

[V n— Y| =minimum (10)  the Lyapunov exponents for Eqél4). The obtained maximum
Lyapunov exponent is approximately 0.110 and chaotic motions
(see Fig. 1 and take occur in Eqgs.(14).
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FIG. 3. Approximate UPO detected in numerical simulations of 0 - L L L L L

Egs. (14) for 6=0.5, y=1.6, andw= /5. The dots represent an 1.2 14 1.6 1.8 2

edge of the UPO.

Y
struct them globally15]. However, the information we need . ) )
is local, and%wo-d%‘nensional coordinates are enough for Ouéroiilri;e. Sg‘g”;;y ,Eigugda;f: :;%Lizg,ec ?ggfeilnn(:'sn?hteost?:bﬁg
E(L)Ilrs eo ?Nei(tfweri eﬂ;i ?gr%egﬁg( ilr?te':r:gébyz—ftg.’oz ga;ds 5 Iea:jn ovr\llhtlf:ee boundary for the UPO when the external feedback control is ap-
right-hand side of the second equation of Eds). Such an plied. Above the curve the UPO becomes stable. The broken and
. . - . ” .dash-dotted curves, respectively, represent the stability boundaries
mflyence of noise ”.““St be taken into cons!deranon for appllWhen the delayed feedback control and no control are applied. A
cation to real physical Sys_tems' In both F_|g_(sa)2and Z_b_)’ very small stability region for the delayed feedback control exists
10000 data after 100 periods under the initial conditign

near (y,«)=(2,0), although it is almost invisible.
=X,=0 are plotted.
The approach of Sec. Il withy=0.05 andr,=0.1 was We tried to stabilize the UPO from=0 to n= 1500 and
used to obtain an approximateperiodic orbify(t) when the

; ) ) - i ~_applied no feedback control force aftar=1500, wheren
Gaussian white noise af=0.03 was added. The time Series oqe5ents time with the period of the external force as a unit.

of y given in Fig. 2b) was used to detect the approximate the annroach stated at the end of Sec. Il was also used to
locus of the UPO, which was estimated ®s~1.044. The

: . " keep the control force small. Figure 5 shows the result for
zgpond time ser:jes 2‘fW6]lcS calculﬁted undelr th'":t mr:tlal chqn- x=0.6 andr,=0.2. Time series of the dimensionless veloc-

ition x;=1 and x,=0 for another sample of the white ;. v anq external feedback control forecesampled atwt
noise. Figure 3 shows the obtained approximate UPO. Usin

h h id al ) ) 0 mod 27 are drawn in Figs. & and gb), respectively.
the approach, we could also obtain a symmetric counterpagye see that our approach succeeded in stabilizing the UPO

fsoerriiisg. 3 but could not obtain other UPOs from these timey,, gma| control force in spite of a relatively large influence

To stabilize the UPO of Fig. 3, we apply the external
feedback control so that control forae= «(y(t) —y) was (a)
added to the second equation of E¢s4). Using computer
software calledauto [16] with a driver called HomMap > 1 p
[17], we computed the stability boundaries for a numerically
computed UPO corresponding to the approximate UPO of
Fig. 3. The result is shown in Fig. 4. The stability boundaries

'
—

for the same UPO when the delayed feedback control 0 200 1000 1500 2000
x[y(t—7)—y(t)] is applied instead of the external feedback n

control are also drawn in Fig. 4. Here the stability regions for

the delayed feedback control were numerically obtained us- (b)

ing the linear stability theory of time-delay differential equa- 92

tions[18] as in[6,19]. We see that the stability region forthe = ¢ MWMWW
external feedback control is much larger than that for the

. . -0.2
delayed feedback control. Smallness of the stability region
Whe_n the del_ayed feedl_)ac_k control and its extensions art 0 500 1000 1500 2000
applied to a different periodic orbit was also observe{bin n
We also remark that large external feedback gain can always

stabilize the target in Fig. 4, but this is not the case when an FIG. 5. Result of chaos control for Eq&l4) with k=0.6, 1,
approximate UPO is used since the perturbation applied te-0.2, 5=0.5, y=1.6, andw=/5: (a) time series of the dimen-
the system is so large that there can exist no periodic orbiionless velocity sampled atot=0 mod 2r; (b) external feedback
near the UPO. control forceu. See the text for further information.

026204-3



KAZUYUKI YAGASAKI AND MORIYOSHI KUMAGAI PHYSICAL REVIEW E 65026204

of noise. The nonzero feedback control force was required P

. -~ . ersonal
while the target was stabilized because of the influence of Computer
noise as well as an error of the detected UPO. We also add : .
that the use of rather large valueskofailed to control chaos. Amplifier
This is due to the fact that the error of the approximate UPO 1
can be seriously amplified and disturbs the stabilization of
the target when is large.

Servo- [ 1Generator
Motor 1 [ 1
IV. EXPERIMENTS FOR FORCED, SINGLE AND
COUPLED PENDULA WITH DRY FRICTION
Pendulum 1

We next present experimental results for periodically
forced, single and coupled pendula. The experimental system ]
is shown in Fig. 6. Each of the pendula consisted of a brass Amplifier
rod 120 mm long with a 10-mm circular cross section, and a 2
brass disk of 36-mm diameter and 16-mm thickness having a L1 Digital
5-mm-diam hole. They were attached to the shafts of servo- Oscilloscope
motors through the holes. The natural angular frequencies of Servo- LG :
the pendula about the hanging-down position were estimated Motor 2 g o
as 10.0 rad/s. The velocities of the pendula, j = 1,2, were
measured from the voltage outputs of generators, and were Pendulum 2

sampled by a personal computer through electric circuits and
an A/D converter at every 1 ms. Each of the servomotors was
powered by periodic voltag¥;(t) =V;,cos(lt, j=1,2. For

the coupled pendula case, voltagg(#,— 1) or k.(f1  mated as,=0.39 andd,=0.14. More details on the experi-
—6,) was also supplied to the servomotor, whargis a  mental system are given elsewh¢g®]. Henceforth we set
constant. It was difficult to find UPOs from time series of thethe other parameter values &s-1.25 andw=0.7 for the

velocities when damping is small. So voltagexy6;, j  Single pendulum, and ag,=1.4, y,=0.5, =07, ande
=1,2, with x4 a constant was added to increase the actuaf 0-3 for the coupled pendula. _ _
damping constants. These input signals were computed on a Figure 7. shows chaot|.c attractors obtained expenmentally
personal computer and output through a D/A converter. Th@nd numerically for the single and coupled pendulaFigs.
output signals of the generators and input signals of the ser(&) and 1b), the delay coordinates are used. Two- and four-
vomotors were also monitored with a digital oscilloscope. dimensional coordinates are enough for our purpose in the
The servomotors used in the experiments had a dampingjngle and coupled pendula, respectividge Sec. Il and the

characteristic of a dry friction type. So the dimensionless"PPendix, although the attractors in Figs(aJ and qb) are

equations of motion are approximately given by obviously fo[ded. In. numgrical si.mul'ations' of Figgbyand
7(d), Gaussian white noises with intensity=0.03 were

added in the second equation of E¢k5) and in the second

FIG. 6. Block diagram of the experimental apparatus.

X1= X2, and fourth equations of Eq$16). Agreements between the
(15 experimental and numerical chaotic attractors are fine. We
Xo= —S8INX1— §1X5— 8y SQNX,+ y COSwt suspect that small differences result from the occurrence of
stick motions of the pendula in experiments due to damping
for the single pendulum, and characteristics of a dry friction type as well as errors of the
estimated parameter values.
X1 =Xy, The approach of Sec. Il withrg,rl)z(0.0Z_B,O.l) and_
(ro1,ro2,r11.r12) =(0.03,0.03,0.3,0.1) was applied to obtain
) ) approximater-periodic orbitsy(t) for the single pendulum
Xp= —SINX; = 81X;— 89 SGNXp + v COSwt — a(Xa—Xy), and (¥,(t),¥2(t)) for the coupled pendula. Herg; andr;,
(16)  respectively, represent the values gfandr, in Egs.(7) and
X3=X4, (9) for the jth pendulumj =1,2. The successive points were

regarded as approximate loci efperiodic orbits or as the
target UPOs only if conditiori7) or (9) holds for both pen-
)-(4: - SinX3_ 51X4_ 50 San4+ Y2 COSwt— CY(X4_X2)

for the coupled pendula, whe#, &, ¥, y1, 72, o, anda 2We used the computer softwananamics [14] to compute the

are constants and sgn represents the signum function. Th§apunov exponents for Eq$15) and (16) with the approximate
outputs for the single and coupled pendula arex; andy  sgn function(17). Only one positive Lyapunov exponent was ob-
=(y1,Y2) "= (X2,X4)", respectively, withT the transpose op-  tained for both cases and approximately estimated as 0.163 for Egs.
erator. The constant§; and 6, were experimentally esti- (15) and 0.0869 for Eqd.16).
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e FIG. 7. Experimentally and numerically ob-
2 3 served chaotic attractor&) and(b) experimental

and numerical results for the single pendulym);
and (d) experimental and numerical results for

' the coupled pendula. In numerical simulations,
Gaussian white noises with intensity=0.03 are
added.
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FIG. 8. Approximate UPOs found in experiments) single

dula. The obtained, approximate UPOs are shown in Fig. 8.
In these cases, other UPOs could be detected except symmet-
ric counterparts.

To stabilize the UPOs of Fig. 8, we apply the external
feedback control such that control foroe= «(y(t) —y) and
uj=x;;(t)—y;), j=1,2, was supplied to each of the pen-
dula for the single and coupled pendula, respectively. Again,
using the computer softwaresTo with the driver HomMap,
we computed the stability boundaries for numerically com-
puted UPOs corresponding to the approximate UPOs of Fig.
8. In the computations, the sgn function was approximated as

sgn{~ %arctamag) (17)

with a=50. The computed stability boundaries are shown in
Fig. 9. In Fig. 9a), the periodic force amplitudeg is varied,

and the stability boundaries when the delayed feedback con-
trol k(y(t—7)—y(t)) is applied instead of the external feed-
back control are also drawn. We see that the stability regions
for the UPOs are rather wide. In particular, for the coupled
pendula, the UPO can be stabilized by applying control force
to only one of the pendula.

Figures 10 and 11 show the experimental results for the
single and coupled pendula, respectively. Here0.5 and
r,=0.2 for the single pendulum in Fig. 10, ang =0.6,
k,=0, andr,;=r,,=0.2 for the coupled pendula in Fig. 11,
wherer,; represents the value of in (13) for the jth pen-
dulum,j=1,2. Only when conditiori13) holds for both pen-
dula was the control force applied. The dimensionless pen-

pendulum;(b) coupled pendula. The dots represent an edge of th&lulum velocities and control force aét=0 mod 27 are

UPOs.

plotted. Attempts to stabilize the UPOs from=0 to n
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L 4 FIG. 10. Result of chaos control for the single pendulum with
L 4 x=0.5 andr,=0.2: (a) time series of the dimensionless velocjty
@ L 4 sampled atwt=0 mod 2m; (b) external feedback control forae
05 | 4 See the text for further information.
- - Finally, we give some comments on further work to im-
- - prove our results. First, it is often difficult to precisely detect
- - UPOs from chaotic time series by the techniqué¢ldf]. The
0 . 1 0'5 e 1 . imprecision of the UPOs yields a problem in our approach of
S e
3
FIG. 9. Stability boundaries of accurate UPOs in Ed$) and @
(16) with the approximate sgn function of E(L7): (a) single pen- 2

dulum; (b) coupled pendula. The UPOs correspond to the approxi-=
mate UPOs in Figs. (@ and &b). The solid curves represent the
stability boundaries for the UPOs when the external feedback con-
trol is applied. The U_POs beco_me stable above the curve) iand 0 500 1000 1500 2000
between the curves ifb). Also, in (a), the broken and dash-dotted
curves, respectively, represent the stability boundaries when the de
layed feedback control and no control are applied.

1 Bestrtomtin Pttt

(b
=1500 were made and no control force was applied after D)

=1500. We see that our approach succeeded in stabilizings
the target UPOs in spite of relatively large influences of 1 ﬂwgw#.wmm»m\,mewammwm
noise, again. It should also be noted that the control force

was applied to only one pendulum for the coupled pendula. 0

0 500 1000 1500 2000

V. CONCLUSIONS

In this paper, we have applied the external feedback tech 04 ©
nique to control chaos using approximate UPOs obtainec 92
from chaotic times series. We demonstrated its usefulness 0o MWMMW&—
and effectiveness for periodically forced, single and coupled 02
pendula in numerical simulations and experiments. In par-
ticular, our approach succeeded in controlling chaos in actua -0-4
experiments under relatively large influence of noise. More-
over, in our examples, it could stabilize the target in wide
parameter regions, while the delayed feedback technique piG. 11. Result of chaos control for the coupled pendula with
could only do so in very narrow ones. Thus, we showed thaf, =0.6, x,=0, andr,;=r=0.2: () and (b) time series of the
the external feedback technique is as promising in chaos comtimensionless velocitieg, andy, sampled awt=0 mod 2, (c)
trol of continuous systems as the delayed feedback techexternal feedback control forae,. See the text for further infor-
nigque. mation.

0 500 1000 1500 2000
n
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controlling chaos especially when nonsmall feedback gain is Suppose that
required since large control force has to be applied. More-
over, when they have too strong unstable directions, the do
UPOs are difficult to find. It is desired to resolve these dif- 7 (Un-1:Vn-1)#0 (A2)
ficulties. The method of21] may be helpful to this end.
Second, in our examples, the governing equations were i _ _ .
priori known at least approximately, so that the feedback0r SOme pointl,_1,0n-1). LetUn=¢(Uy—1,0n-1). Then
gain could be estimated. However, in many applications th&'€ apply the implicit function theorem to
governing equations are unknown and such an estimation of
the feedback gain is not given. So a method of determining Un=¢(Un-1,0n-1) (A3)
the feedback gain from chaotic time series is expected to be
developed. Some work has been progressing in these diregaar @, ;,v,_4)=(U,_1,0,_1) to show that there is a

tions and will be reported elsewhere. function h: R2— R such thatv,_,=h(U,_,,u,) andv,_;
=h(u,_,u,) satisfies Eq.(A3) for any (u,_;,u,) hear
ACKNOWLEDGMENT (Up_1,Un). Hence, since,,= ¢(Up_1,0n-1),
One of the authorg¢K. Y.) was partially supported by a
Grant-in-Aid for Scientific Research from the Japan Society Un+1= @(Up, $(Un—1,h(Un—1,Up))) (A4)

for the Promotion of Science, 10650236.
near {,_,U,). Thus we can rewrite the systefl) in the

APPENDIX: RELATIONSHIP BETWEEN ORIGINAL AND two-dimensional delay coordinates,(_;,u,) near the point

DELAY COORDINATES (Up_1,Up). In particular, if an attractor of EqA1) includes
(u,—1,u,), then the local dimension of the attractor at that
point is at most 2. Note that conditid®2) holds at almost

(Un+1,0n+1) = (@(Un,vn), #(Un,vp)). (A1)  all points in a general setting.
It can also be proved analogously for higher-dimensional

We want to transform this system from the original coordi-systems that the number of delay coordinates locally re-
nates (,,v,) to delay coordinates u,_1,u,). Another quired is generally at most the same as that of the original
choice of ¢,_1,v,) can be treated similarly. coordinates.

Consider a two-dimensional discrete dynamical system
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