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External feedback control of chaos using approximate periodic orbits
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We apply the external feedback technique to control chaos in real physical systems. The target, unstable
periodic orbits embedded in chaotic attractors are obtained from chaotic time series in terms of the delay
coordinates technique. We demonstrate its efficiency for periodically forced, single- and two-degree-of-
freedom systems consisting of one or two pendula in numerical simulations and experiments.
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I. INTRODUCTION

Chaos control has attracted much attention in the p
decade and some techniques for controlling chaotic dyna
cal systems have been developed@1,2#. Among them, Pyra-
gas@3# proposed two effective control methods for contin
ous chaotic dynamical systems. Consider a situation in wh
the governing equation is given by

j̇5P~j,h!, ḣ5Q~j,h!1F~ t !, ~1!

where jPRn21 is not available or not of interest, onlyh
PR can be measured,P: Rn213R→Rn21 andQ:Rn213R
→R are sufficiently smooth, andF(t) is the control force,
and assume that Eqs.~1! have a chaotic attractor whenF
50. In this setting, he proposed two types of feedback c
trol, external feedback control

F~ t !5k„h̄~ t !2h… ~2!

anddelayed feedback control

F~ t !5k„h~ t2t!2h~ t !…, ~3!

to stabilize an unstable periodic orbit~UPO! embedded in the
chaotic attractor. Hereh̄(t) is the UPO to be stabilized andt
is its period. In particular, the delayed feedback control te
nique has been applied experimentally to many mechan
electric, chemical, and biological problems@2,4#, and it was
also extended to improve its efficiency@5#. However, it was
shown numerically@6# ~see also Sec. III! and theoretically
@7# that the effectiveness of the method is very restrictive

On the other hand, the external feedback control was
tually used to control chaos in only very limited cases. To
authors’ knowledge, there has been no experimental app
tion except Ref.@8#, in which a priori given equilibrium
states were stabilized in an electric circuit. So it is still u
known whether this method is valid or not for stabilizin
UPOs embedded in chaotic attractors. Especially, obtain
precise UPOs enough for chaos control seems difficult
though a rough idea to overcome the problem was state
Pyragas’ original paper@3#. It should also be noted that pro
viding large perturbations~e.g., the use of large feedbac
gain and an attempt to stabilize the periodic orbit existing
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different parameter values! to systems as in Sec. 4 of@9# is
inappropriate in some applications.

In this paper, we apply the external feedback technique
control chaos in real physical systems. The target UPOs
obtained from chaotic time series in terms of the delay co
dinates technique@10,11#, basically according to Pyragas
rough idea. We demonstrate its efficiency for periodica
forced, single-, and two-degree-of-freedom systems con
ing of one or two pendula in numerical simulations a
experiments.

The outline of this paper is as follows. In Sec. II o
external feedback control technique is described. In part
lar, an approach to obtain the target UPOs from chaotic t
series based on the delay coordinates technique is prese
Numerical simulation and experimental results for perio
cally forced, single, and coupled pendula are given in Se
III and IV. Finally, a summary and some comments are sta
in Sec. V.

II. APPROACH

Consider systems of the form@12#

ẋ5 f ~x,t !, y5g~x!, xPRn, yPRm, ~4!

wheref :Rn3R→Rn (n>2) andg:Rn→Rm (m>1) are suf-
ficiently smooth, andf is t-periodic in t. Herex denotes the
state of the system andy the output. So onlyy can be mea-
sured. Equations~4! are assumed to exhibit chaotic motion
Note that any periodic orbit in Eqs.~4! has a period of the
form kt with k some positive integer. In the following, w
only treat the case oft-periodic orbits, although an extensio
of the result tokt-periodic orbits is obvious.

Let x̄(t) be an unstablet-periodic orbit near the chaotic
attractor in the first equation of Eqs.~4!, and letȳ(t) be the
correspondingt-periodic output, i.e.,ȳ(t)5g„x̄(t)…. We at-
tempt to stabilize the orbitȳ(t) by external feedback, so tha
the governing equation becomes

ẋ5 f ~x,t !1K@ ȳ~ t !2y# @y5g~x!#, ~5!

whereK is ann3m matrix. Equation~5! contains Pyragas
case of Eqs.~1! with external feedback as a special one.
realistic situations, the exact UPOȳ(t) is difficult to obtain
since it is unobservable. However, when the system~4! ex-
hibits chaos, one can sometimes obtain an approximation
ȳ(t) from chaotic time series ofy(t), e.g., using a method o
Lathrop and Kostelich@11#, as described below. If such a

o,
©2002 The American Physical Society04-1
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KAZUYUKI YAGASAKI AND MORIYOSHI KUMAGAI PHYSICAL REVIEW E 65 026204
approximate UPOȳ(t) is obtained, then we use it instead
the exact UPO, so that Eq.~5! is changed as

ẋ5 f ~x,t !1K@ ỹ~ t !2y#. ~6!

We now describe an approach to obtain an approxim
UPO ỹ(t). For simplicity, we assume that the observab
variable y is scalar, i.e.,yPR, and two-dimensional delay
coordinates @10# „y( i t),y@( i 11)t#…, i 51,2,3, . . . , are
used. An extension of the approach to higher-dimensio
cases is obvious.

We first sample a chaotic time series ofy(t) at t
5t,2t,3t,... . Denote byyi , i 51,2,3, . . . , this time series.
Using a technique of@11#, we can detect an approxima
locus of a UPO att50: if

max~ uyj 122yj 11u,uyj 112yj u!,r 0 ~7!

for some integerj .0 and some small constantr 0.0, then
there exists at-periodic orbitȳ(t) such thatȳ( i t)'yj 11 for
i 50,61,... . Let ỹ0 be one of such points corresponding
approximate UPOs.

We next sample another chaotic time series ofy(t) and
denote it byyi8 , i 51,2,3,... . Suppose that we find success
pointsyj 81 i

8 , i 50,1,2, in the time series such that conditio
~7! holds asyj 1 i5yj 81 i

8 , i 50,1,2, i.e.,

max~ uyj 812
8 2yj 811

8 u,uyj 811
8 2yj 8

8 u!,r 0 ~8!

and

max~ uyj82 ỹ0u,uyj 118 2 ỹ0u,uyj 128 2 ỹ0u!,r 1 , ~9!

where r 1.0 is a small constant. Then we recordy(t) at
a short intervalDt for j 8t<t<( j 812)t, where NDt5t
for some large integerN.0. Let ŷi5y( j 8t1 iDt), i
50,1, . . . ,2N, be the recorded data corresponding to a wa
form of y(t) with length 2t. In particular, ŷ05yj 8

8 , ŷN

5yj 811
8 , and ŷ2N5yj 812

8 .
Finally, using the recorded dataŷi , i 50, . . . ,2N, we

search for an integerk.0 such that

u ŷk1N2 ŷku5minimum ~10!

~see Fig. 1! and take

FIG. 1. Determination of an approximate UPO. Here the timt
is reset att5 j 8t.
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ỹ~ t !5H ŷi 1N if 0< i ,k,

ŷi if k< i<N
~11!

for tP@ iDt,(i 11)Dt) as an approximate UPO correspon
ing to the pointỹ0 obtained from the first time series. Th
memory this approach requires is not so large.

We can also use the approach of@13# to keep the control
force

u5K@ ỹ~ t !2y# ~12!

small if it is applied fortP@ i t,(i 11)t) only when

max„uy@~ i 21!t#2 ỹ~0!u,uy~ i t!2 ỹ~0!u…,r 2 ~13!

for some small constantr 2.0. In addition, this treatmen
prevents the birth of undesirable stable orbits by the exte
feedback control.

In the following sections, we give numerical and expe
mental results for periodically forced, single and coupl
pendula to demonstrate the effectiveness of this chaos
trol technique.

III. NUMERICAL SIMULATIONS FOR A FORCED
PENDULUM WITH LINEAR DAMPING

The first example is a periodically forced pendulum w
linear damping, for which the dimensionless governing eq
tion is given by

ẋ15x2 , ẋ252sinx12dx21g cosvt, ~14!

whered, g, and v are positive constants and the period
t52p/v. Only the velocityy5x2 is assumed to be mea
sured. We fix the parameter values asd50.5, g51.6, and
v5p/5, which were also chosen in@6#.

Figure 2 shows numerically computed chaotic attracto1

in the delay coordinates (yn ,yn11). The attractors are obvi
ously folded so that an extra dimension is required to rec

1Using computer software calledDYNAMICS @14#, we computed
the Lyapunov exponents for Eqs.~14!. The obtained maximum
Lyapunov exponent is approximately 0.110 and chaotic moti
occur in Eqs.~14!.

FIG. 2. Numerically computed chaotic attractors in Eqs.~14!
with d50.5, g51.6, andv5p/5: ~a! s50; ~b! s50.03. Heres
represents the intensity of the added Gaussian white noise.
4-2
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EXTERNAL FEEDBACK CONTROL OF CHAOS USING . . . PHYSICAL REVIEW E65 026204
struct them globally@15#. However, the information we nee
is local, and two-dimensional coordinates are enough for
purpose~see the Appendix!. In Fig. 2~b!, a Gaussian white
noise with mean zero and intensitys50.03 is added on the
right-hand side of the second equation of Eqs.~14!. Such an
influence of noise must be taken into consideration for ap
cation to real physical systems. In both Figs. 2~a! and 2~b!,
10 000 data after 100 periods under the initial conditionx1
5x250 are plotted.

The approach of Sec. II withr 050.05 andr 150.1 was
used to obtain an approximatet-periodic orbitỹ(t) when the
Gaussian white noise ofs50.03 was added. The time serie
of y given in Fig. 2~b! was used to detect the approxima
locus of the UPO, which was estimated asỹ0'1.044. The
second time series ofy was calculated under the initial con
dition x151 and x250 for another sample of the whit
noise. Figure 3 shows the obtained approximate UPO. U
the approach, we could also obtain a symmetric counter
for Fig. 3 but could not obtain other UPOs from these tim
series.

To stabilize the UPO of Fig. 3, we apply the extern
feedback control so that control forceu5k„ỹ(t)2y… was
added to the second equation of Eqs.~14!. Using computer
software calledAUTO @16# with a driver called HomMap
@17#, we computed the stability boundaries for a numerica
computed UPO corresponding to the approximate UPO
Fig. 3. The result is shown in Fig. 4. The stability boundar
for the same UPO when the delayed feedback con
k@y(t2t)2y(t)# is applied instead of the external feedba
control are also drawn in Fig. 4. Here the stability regions
the delayed feedback control were numerically obtained
ing the linear stability theory of time-delay differential equ
tions @18# as in@6,19#. We see that the stability region for th
external feedback control is much larger than that for
delayed feedback control. Smallness of the stability reg
when the delayed feedback control and its extensions
applied to a different periodic orbit was also observed in@6#.
We also remark that large external feedback gain can alw
stabilize the target in Fig. 4, but this is not the case when
approximate UPO is used since the perturbation applie
the system is so large that there can exist no periodic o
near the UPO.

FIG. 3. Approximate UPO detected in numerical simulations
Eqs. ~14! for d50.5, g51.6, andv5p/5. The dots represent a
edge of the UPO.
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We tried to stabilize the UPO fromn50 to n51500 and
applied no feedback control force aftern51500, wheren
represents time with the period of the external force as a u
The approach stated at the end of Sec. II was also use
keep the control force small. Figure 5 shows the result
k50.6 andr 250.2. Time series of the dimensionless velo
ity y and external feedback control forceu sampled atvt
50 mod 2p are drawn in Figs. 5~a! and 5~b!, respectively.
We see that our approach succeeded in stabilizing the U
by small control force in spite of a relatively large influen

f

FIG. 4. Stability boundaries of a UPO corresponding to the
proximate UPO in Fig. 3. The solid curve represents the stab
boundary for the UPO when the external feedback control is
plied. Above the curve the UPO becomes stable. The broken
dash-dotted curves, respectively, represent the stability bound
when the delayed feedback control and no control are applied
very small stability region for the delayed feedback control exi
near (g,k)5(2,0), although it is almost invisible.

FIG. 5. Result of chaos control for Eqs.~14! with k50.6, r 2

50.2, d50.5, g51.6, andv5p/5: ~a! time series of the dimen-
sionless velocityy sampled atvt50 mod 2p; ~b! external feedback
control forceu. See the text for further information.
4-3
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KAZUYUKI YAGASAKI AND MORIYOSHI KUMAGAI PHYSICAL REVIEW E 65 026204
of noise. The nonzero feedback control force was requ
while the target was stabilized because of the influence
noise as well as an error of the detected UPO. We also
that the use of rather large values ofk failed to control chaos.
This is due to the fact that the error of the approximate U
can be seriously amplified and disturbs the stabilization
the target whenk is large.

IV. EXPERIMENTS FOR FORCED, SINGLE AND
COUPLED PENDULA WITH DRY FRICTION

We next present experimental results for periodica
forced, single and coupled pendula. The experimental sys
is shown in Fig. 6. Each of the pendula consisted of a br
rod 120 mm long with a 10-mm circular cross section, an
brass disk of 36-mm diameter and 16-mm thickness havin
5-mm-diam hole. They were attached to the shafts of se
motors through the holes. The natural angular frequencie
the pendula about the hanging-down position were estim
as 10.0 rad/s. The velocities of the pendula,u̇ j , j 51,2, were
measured from the voltage outputs of generators, and w
sampled by a personal computer through electric circuits
an A/D converter at every 1 ms. Each of the servomotors
powered by periodic voltageVj (t)5Vj 0 cosVt, j 51,2. For
the coupled pendula case, voltageka( u̇22 u̇1) or ka( u̇1

2 u̇2) was also supplied to the servomotor, whereka is a
constant. It was difficult to find UPOs from time series of t
velocities when damping is small. So voltage2kdu̇ j , j
51,2, with kd a constant was added to increase the ac
damping constants. These input signals were computed
personal computer and output through a D/A converter. T
output signals of the generators and input signals of the
vomotors were also monitored with a digital oscilloscope

The servomotors used in the experiments had a dam
characteristic of a dry friction type. So the dimensionle
equations of motion are approximately given by

ẋ15x2 ,
~15!

ẋ252sinx12d1x22d0 sgnx21g cosvt

for the single pendulum, and

ẋ15x2 ,

ẋ252sinx12d1x22d0 sgnx21g1 cosvt2a~x22x4!,
~16!

ẋ35x4 ,

ẋ452sinx32d1x42d0 sgnx41g2 cosvt2a~x42x2!

for the coupled pendula, whered1 , d0 , g, g1 , g2 , v, anda
are constants and sgn represents the signum function.
outputs for the single and coupled pendula arey5x2 andy
5(y1 ,y2)T5(x2 ,x4)T, respectively, withT the transpose op
erator. The constantsd1 and d0 were experimentally esti
02620
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mated asd150.39 andd050.14. More details on the exper
mental system are given elsewhere@20#. Henceforth we set
the other parameter values asg51.25 andv50.7 for the
single pendulum, and asg151.4, g250.5, v50.7, anda
50.3 for the coupled pendula.

Figure 7 shows chaotic attractors obtained experiment
and numerically for the single and coupled pendula.2 In Figs.
7~a! and 7~b!, the delay coordinates are used. Two- and fo
dimensional coordinates are enough for our purpose in
single and coupled pendula, respectively~see Sec. III and the
Appendix!, although the attractors in Figs. 7~a! and 7~b! are
obviously folded. In numerical simulations of Figs. 7~b! and
7~d!, Gaussian white noises with intensitys50.03 were
added in the second equation of Eqs.~15! and in the second
and fourth equations of Eqs.~16!. Agreements between th
experimental and numerical chaotic attractors are fine.
suspect that small differences result from the occurrence
stick motions of the pendula in experiments due to damp
characteristics of a dry friction type as well as errors of t
estimated parameter values.

The approach of Sec. II with (r 0 ,r 1)5(0.03,0.1) and
(r 01,r 02,r 11,r 12)5(0.03,0.03,0.3,0.1) was applied to obta
approximatet-periodic orbitsỹ(t) for the single pendulum
and„ỹ1(t),ỹ2(t)… for the coupled pendula. Herer 0 j andr 1 j ,
respectively, represent the values ofr 0 andr 1 in Eqs.~7! and
~9! for the j th pendulum,j 51,2. The successive points we
regarded as approximate loci oft-periodic orbits or as the
target UPOs only if condition~7! or ~9! holds for both pen-

2We used the computer softwareDYNAMICS @14# to compute the
Lyapunov exponents for Eqs.~15! and ~16! with the approximate
sgn function~17!. Only one positive Lyapunov exponent was o
tained for both cases and approximately estimated as 0.163 for
~15! and 0.0869 for Eqs.~16!.

FIG. 6. Block diagram of the experimental apparatus.
4-4
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FIG. 7. Experimentally and numerically ob
served chaotic attractors:~a! and~b! experimental
and numerical results for the single pendulum;~c!
and ~d! experimental and numerical results fo
the coupled pendula. In numerical simulation
Gaussian white noises with intensitys50.03 are
added.
. 8.
met-

al

n-
in,

m-
Fig.

as

in

on-
d-
ons
led
rce

the

,

en-
th
FIG. 8. Approximate UPOs found in experiments:~a! single
pendulum;~b! coupled pendula. The dots represent an edge of
UPOs.
02620
dula. The obtained, approximate UPOs are shown in Fig
In these cases, other UPOs could be detected except sym
ric counterparts.

To stabilize the UPOs of Fig. 8, we apply the extern
feedback control such that control forceu5k„ỹ(t)2y… and
uj5k j„ỹ j (t)2yj…, j 51,2, was supplied to each of the pe
dula for the single and coupled pendula, respectively. Aga
using the computer softwareAUTO with the driver HomMap,
we computed the stability boundaries for numerically co
puted UPOs corresponding to the approximate UPOs of
8. In the computations, the sgn function was approximated

sgnz'
2

p
arctan~az! ~17!

with a550. The computed stability boundaries are shown
Fig. 9. In Fig. 9~a!, the periodic force amplitudeg is varied,
and the stability boundaries when the delayed feedback c
trol k„y(t2t)2y(t)… is applied instead of the external fee
back control are also drawn. We see that the stability regi
for the UPOs are rather wide. In particular, for the coup
pendula, the UPO can be stabilized by applying control fo
to only one of the pendula.

Figures 10 and 11 show the experimental results for
single and coupled pendula, respectively. Herek50.5 and
r 250.2 for the single pendulum in Fig. 10, andk150.6,
k250, andr 215r 2250.2 for the coupled pendula in Fig. 11
wherer 2 j represents the value ofr 2 in ~13! for the j th pen-
dulum, j 51,2. Only when condition~13! holds for both pen-
dula was the control force applied. The dimensionless p
dulum velocities and control force atvt50 mod 2p are
plotted. Attempts to stabilize the UPOs fromn50 to n
e

4-5
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KAZUYUKI YAGASAKI AND MORIYOSHI KUMAGAI PHYSICAL REVIEW E 65 026204
51500 were made and no control force was applied aften
51500. We see that our approach succeeded in stabili
the target UPOs in spite of relatively large influences
noise, again. It should also be noted that the control fo
was applied to only one pendulum for the coupled pendu

V. CONCLUSIONS

In this paper, we have applied the external feedback te
nique to control chaos using approximate UPOs obtai
from chaotic times series. We demonstrated its usefuln
and effectiveness for periodically forced, single and coup
pendula in numerical simulations and experiments. In p
ticular, our approach succeeded in controlling chaos in ac
experiments under relatively large influence of noise. Mo
over, in our examples, it could stabilize the target in wi
parameter regions, while the delayed feedback techn
could only do so in very narrow ones. Thus, we showed t
the external feedback technique is as promising in chaos
trol of continuous systems as the delayed feedback te
nique.

FIG. 9. Stability boundaries of accurate UPOs in Eqs.~15! and
~16! with the approximate sgn function of Eq.~17!: ~a! single pen-
dulum; ~b! coupled pendula. The UPOs correspond to the appr
mate UPOs in Figs. 8~a! and 8~b!. The solid curves represent th
stability boundaries for the UPOs when the external feedback c
trol is applied. The UPOs become stable above the curve in~a! and
between the curves in~b!. Also, in ~a!, the broken and dash-dotte
curves, respectively, represent the stability boundaries when the
layed feedback control and no control are applied.
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Finally, we give some comments on further work to im
prove our results. First, it is often difficult to precisely dete
UPOs from chaotic time series by the technique of@11#. The
imprecision of the UPOs yields a problem in our approach

i-

n-

e-

FIG. 10. Result of chaos control for the single pendulum w
k50.5 andr 250.2: ~a! time series of the dimensionless velocityy
sampled atvt50 mod 2p; ~b! external feedback control forceu.
See the text for further information.

FIG. 11. Result of chaos control for the coupled pendula w
k150.6, k250, and r 215r 2250.2: ~a! and ~b! time series of the
dimensionless velocitiesy1 andy2 sampled atvt50 mod 2p; ~c!
external feedback control forceu1 . See the text for further infor-
mation.
4-6
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EXTERNAL FEEDBACK CONTROL OF CHAOS USING . . . PHYSICAL REVIEW E65 026204
controlling chaos especially when nonsmall feedback gai
required since large control force has to be applied. Mo
over, when they have too strong unstable directions,
UPOs are difficult to find. It is desired to resolve these d
ficulties. The method of@21# may be helpful to this end.

Second, in our examples, the governing equations wea
priori known at least approximately, so that the feedba
gain could be estimated. However, in many applications
governing equations are unknown and such an estimatio
the feedback gain is not given. So a method of determin
the feedback gain from chaotic time series is expected to
developed. Some work has been progressing in these d
tions and will be reported elsewhere.
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APPENDIX: RELATIONSHIP BETWEEN ORIGINAL AND
DELAY COORDINATES

Consider a two-dimensional discrete dynamical system

~un11 ,vn11!5„w~un ,vn!,c~un ,vn!…. ~A1!

We want to transform this system from the original coor
nates (un ,vn) to delay coordinates (un21 ,un). Another
choice of (vn21 ,vn) can be treated similarly.
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